Detection and determination of oligonucleotide triplex formation-mediated transcription-coupled DNA repair in HeLa nuclear extracts.

نویسندگان

  • G Wang
  • Z Chen
  • S Zhang
  • G L Wilson
  • K Jing
چکیده

Transcription-coupled repair (TCR) plays an important role in removing DNA damage from actively transcribed genes. It has been speculated that TCR is the most important mechanism for repairing DNA damage in non-dividing cells such as neurons. Therefore, abnormal TCR may contribute to the development of many age-related and neurodegenerative diseases. However, the molecular mechanism of TCR is not well understood. Oligonucleotide DNA triplex formation provides an ideal system to dissect the molecular mechanism of TCR since triplexes can be formed in a sequence-specific manner to inhibit transcription of target genes. We have recently studied the molecular mechanism of triplex-forming oligonucleotide (TFO)-mediated TCR in HeLa nuclear extracts. Using plasmid constructs we demonstrate that the level of TFO-mediated DNA repair activity is directly correlated with the level of transcription of the plasmid in HeLa nuclear extracts. TFO-mediated DNA repair activity was further linked with transcription since the presence of rNTPs in the reaction was essential for AG30-mediated DNA repair activity in HeLa nuclear extracts. The involvement of individual components, including TFIID, TFIIH, RNA polymerase II and xeroderma pigmentosum group A (XPA), in the triplex-mediated TCR process was demonstrated in HeLa nuclear extracts using immunodepletion assays. Importantly, our studies also demonstrated that XPC, a component involved in global genome DNA repair, is involved in the AG30-mediated DNA repair process. The results obtained in this study provide an important new understanding of the molecular mechanisms involved in the TCR process in mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ساختار مولکول DNA سه رشته ای: اهمیت و کاربردهای پزشکی آن

Back in 1957, when investigators produced a triple-stranded form of DNA while studying synthetic nucleic acids, few researchers paid much attention to the discovery. However, triplex DNA was never entirely forgotton and especially since 1987 its structural and functional importance in biological systems as well as its medical applications and therapeutic potentional have been extensively studie...

متن کامل

Accessibility of nuclear DNA to triplex-forming oligonucleotides: The integrated HIV-1 provirus as a target (oligonucleotide–psoralen conjugateyDNA accessibilityycompetitive PCRyantigene oligonucleotidesyHIV)

The control of gene transcription by antigene oligonucleotides rests upon the specific recognition of doublehelical DNA by triplex-forming oligonucleotides. The development of the antigene strategy requires access to the targeted DNA sequence within the chromatin structure of the cell nucleus. In this sudy we have used HIV-1 chronically infected cells containing the HIV provirus as endogenous g...

متن کامل

DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter.

We have developed a new biochemical method to isolate a homogeneous population of RNA polymerase II (RNA pol II) elongation complexes arrested at a DNA damage site. The method involves triple-helix formation at a predetermined site in DNA template with a third strand labeled with psoralen at its 5'-end and a biotin at the 3'-end. After triplex formation and near-ultraviolet irradiation (360 nm)...

متن کامل

Understanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes.

Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed reg...

متن کامل

A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence.

Oligonucleotide-directed triplex formation within upstream regulatory sequences is envisioned as a potential tool for gene inhibition. However, this approach requires that triple helix-forming oligonucleotides are chemically modified, so that the triplex is stable under physiological conditions. Here, we have compared several chemical modifications of an oligonucleotide, targeted to a natural 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 8  شماره 

صفحات  -

تاریخ انتشار 2001